Rotation Generator Types
Abstract rotation generators
A matrix $R$ is called skew-symmetric matrix if $R$ satisfies
\[\begin{aligned} R^\top &= -R. \end{aligned}\]
In Rotations.jl
, there's an abstract type for skew-symmetric matrix, RotationGenerator{L}
. Where L
is a size of the skew-symmetric matrix.
Type hierarchy
julia> using Rotations, StaticArrays
julia> RotationGenerator <: StaticMatrix <: AbstractMatrix
true
julia> subtypes(RotationGenerator{2})
2-element Vector{Any}: Angle2dGenerator RotMatrixGenerator{2}
julia> subtypes(RotationGenerator{3})
2-element Vector{Any}: RotMatrixGenerator{3} RotationVecGenerator
Overview of each type
For more information, see the sidebar page.
2D rotations
RotMatrixGenerator2{T}
- Skew symmetric matrix in 2 dimensional Euclidean space.
Angle2dGenerator
- Parametrized with one real number like
Angle2d
.
- Parametrized with one real number like
3D rotations
RotMatrixGenerator3{T}
- Skew symmetric matrix in 3 dimensional Euclidean space.
RotationVecGenerator
- Rotation generator around given axis. The length of axis vector represents its angle.