Rotation Generator Types
Abstract rotation generators
A matrix $R$ is called skew-symmetric matrix if $R$ satisfies
\[\begin{aligned} R^\top &= -R. \end{aligned}\]
In Rotations.jl, there's an abstract type for skew-symmetric matrix, RotationGenerator{L}. Where L is a size of the skew-symmetric matrix.
Type hierarchy
julia> using Rotations, StaticArraysjulia> RotationGenerator <: StaticMatrix <: AbstractMatrixtruejulia> subtypes(RotationGenerator{2})2-element Vector{Any}: Angle2dGenerator RotMatrixGenerator{2}julia> subtypes(RotationGenerator{3})2-element Vector{Any}: RotMatrixGenerator{3} RotationVecGenerator
Overview of each type
For more information, see the sidebar page.
2D rotations
RotMatrixGenerator2{T}- Skew symmetric matrix in 2 dimensional Euclidean space.
Angle2dGenerator- Parametrized with one real number like
Angle2d.
- Parametrized with one real number like
3D rotations
RotMatrixGenerator3{T}- Skew symmetric matrix in 3 dimensional Euclidean space.
RotationVecGenerator- Rotation generator around given axis. The length of axis vector represents its angle.