Discretization

Meshes.discretizeFunction
discretize(geometry, [method])

Discretize geometry with discretization method.

If the method is omitted, a default is used as a function of the geometry. Geometries over the 🌐 manifold are refined until the segments are shorter than a maximum length.

source
Meshes.discretizewithinFunction
discretizewithin(boundary, method)

Discretize geometry within boundary with boundary discretization method.

source
Meshes.simplexifyFunction
simplexify(object)

Discretize object into simplices using an appropriate discretization method.

Notes

This function is sometimes called "triangulate" when the object has parametric dimension 2.

source

FanTriangulation

Meshes.FanTriangulationType
FanTriangulation()

The fan triangulation algorithm for convex polygons. See [https://en.wikipedia.org/wiki/Fantriangulation] (https://en.wikipedia.org/wiki/Fantriangulation).

source
hexagon = Hexagon((0.,0.), (1.,0.), (1.,1.),
                  (0.75,1.5), (0.25,1.5), (0.,1.))

mesh = discretize(hexagon, FanTriangulation())

fig = Mke.Figure(size = (800, 400))
viz(fig[1,1], hexagon)
viz(fig[1,2], mesh, showsegments = true)
fig
Example block output

DehnTriangulation

Meshes.DehnTriangulationType
DehnTriangulation()

Max Dehns' triangulation proved in 1899.

The algorithm is described in the first chapter of Devadoss & Rourke 2011, and is based on a theorem derived in 1899 by the German mathematician Max Dehn. See https://en.wikipedia.org/wiki/Two_ears_theorem.

Because the algorithm relies on recursion, it is mostly appropriate for polygons with small number of vertices.

References

  • Devadoss, S & Rourke, J. 2011. [Discrete and computational geometry] (https://press.princeton.edu/books/hardcover/9780691145532/discrete-and-computational-geometry)
source
# polygonal area
polyarea = PolyArea([(0.22926679, 0.47329807), (0.23094065, 0.44913536), (0.2569517, 0.38217533),
                     (0.3072999, 0.272418), (0.34814754, 0.18421611), (0.37949452, 0.11756973),
                     (0.4013409, 0.07247882), (0.41368666, 0.048943404), (0.42597583, 0.031655528),
                     (0.4382084, 0.0206152), (0.45038435, 0.015822414), (0.4625037, 0.017277176),
                     (0.47175184, 0.02439156), (0.47812873, 0.03716557), (0.4816344, 0.055599205),
                     (0.48226887, 0.07969247), (0.48172843, 0.10446181), (0.4800131, 0.12990724),
                     (0.47712287, 0.15602873), (0.47305775, 0.18282633), (0.47093934, 0.20558843),
                     (0.47076762, 0.22431506), (0.47254258, 0.23900622), (0.47626427, 0.24966191),
                     (0.47768936, 0.25845313), (0.47681788, 0.26537988), (0.4736498, 0.27044216),
                     (0.46818516, 0.27363995), (0.4613889, 0.27232954), (0.45326096, 0.2665109),
                     (0.44380143, 0.256184), (0.43301025, 0.24134888), (0.4246466, 0.22978415),
                     (0.41871038, 0.22148979), (0.4152017, 0.21646582), (0.4141205, 0.21471222),
                     (0.41227448, 0.21589448), (0.40966362, 0.22001258), (0.40628797, 0.22706655),
                     (0.40214747, 0.23705636), (0.40200475, 0.24653101), (0.40585983, 0.25549048),
                     (0.41371268, 0.2639348), (0.4255633, 0.2718639), (0.4378565, 0.28495985),
                     (0.4505922, 0.30322257), (0.46377045, 0.32665208), (0.47739124, 0.35524836),
                     (0.5046394, 0.36442512), (0.5455148, 0.35418236), (0.60001767, 0.32452005),
                     (0.66814786, 0.27543822), (0.7186763, 0.24664374), (0.75160307, 0.23813659),
                     (0.76692814, 0.2499168), (0.7646515, 0.28198436), (0.7769703, 0.29925033),
                     (0.8038847, 0.3017147), (0.84539455, 0.28937748), (0.9015, 0.26223865),
                     (0.94408435, 0.24899776), (0.9731477, 0.24965483), (0.98869, 0.26420987),
                     (0.9907113, 0.29266283), (0.9849871, 0.31338844), (0.97151726, 0.32638666),
                     (0.950302, 0.3316575), (0.9213412, 0.32920095), (0.8798396, 0.34078467),
                     (0.8257972, 0.36640862), (0.7592141, 0.40607283), (0.6800901, 0.4597773),
                     (0.6450007, 0.49104902), (0.6539457, 0.49988794), (0.7069251, 0.48629412),
                     (0.803939, 0.45026752), (0.877913, 0.4226481), (0.9288472, 0.40343583),
                     (0.9567415, 0.39263073), (0.961596, 0.39023277), (0.9419039, 0.40523484),
                     (0.89766514, 0.43763688), (0.8288798, 0.48743892), (0.7355478, 0.55464095),
                     (0.6655121, 0.60063523), (0.6187727, 0.6254217), (0.5953296, 0.62900037),
                     (0.5951828, 0.6113712), (0.57516366, 0.60261106), (0.53527224, 0.6027198),
                     (0.4755085, 0.6116975), (0.3958725, 0.6295441), (0.33913234, 0.6398651),
                     (0.30528808, 0.6426605), (0.2943397, 0.6379303), (0.30628717, 0.6256744),
                     (0.32149008, 0.6093727), (0.33994842, 0.5890249), (0.36166218, 0.5646312),
                     (0.38663134, 0.5361916), (0.3919681, 0.520893), (0.3776725, 0.5187355),
                     (0.34374446, 0.52971905), (0.29018405, 0.5538437), (0.25439468, 0.5678829),
                     (0.2363764, 0.5718367), (0.23612918, 0.56570506), (0.25365302, 0.549488),
                     (0.2733971, 0.5246488), (0.29536137, 0.49118724), (0.3195459, 0.4491035),
                     (0.34595063, 0.39839754), (0.3647463, 0.3590396), (0.37593287, 0.33102974),
                     (0.37951034, 0.31436795), (0.37547874, 0.30905423), (0.36070493, 0.3204269),
                     (0.33518887, 0.348486), (0.29893062, 0.3932315), (0.25193012, 0.45466346)])

mesh = discretize(polyarea, DehnTriangulation())

fig = Mke.Figure(size = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showsegments = true)
fig
Example block output

HeldTriangulation

Meshes.HeldTriangulationType
HeldTriangulation([rng]; shuffle=true)

Fast Industrial-Strength Triangulation (FIST) of polygons.

This triangulation method is the method behind the famous Mapbox's Earcut library. It is based on a ear clipping algorithm adapted for complex n-gons with holes. It has O(n²) time complexity where n is the number of vertices. In practice it is very efficient due to heuristics implemented in the algorithm.

The option shuffle is used to shuffle the order in which ears are clipped. It improves the quality of the triangles, which can be very sliver otherwise. Optionally, specify the random number generator rng.

References

  • Held, M. 1998. [FIST: Fast Industrial-Strength Triangulation of Polygons] (https://link.springer.com/article/10.1007/s00453-001-0028-4)
  • Eder et al. 2018. [Parallelized ear clipping for the triangulation and constrained Delaunay triangulation of polygons] (https://www.sciencedirect.com/science/article/pii/S092577211830004X)
source
mesh = discretize(polyarea, HeldTriangulation())

fig = Mke.Figure(size = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showsegments = true)
fig
Example block output

DelaunayTriangulation

Meshes.DelaunayTriangulationType
DelaunayTriangulation([rng])

Constrained Delaunay triangulation of polygons. Optionally, specify the random number generator rng.

References

  • Cheng et al. 2012. [Delaunay Mesh Generation] (https://people.eecs.berkeley.edu/~jrs/meshbook.html)

Notes

Wraps DelaunayTriangulation.jl. For any internal errors, file an issue at DelaunayTriangulation.jl

source
mesh = discretize(polyarea, DelaunayTriangulation())

fig = Mke.Figure(size = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showsegments = true)
fig
Example block output

As can be seen in the following example, all discretization methods for Polygon automatically work in the presence of holes:

outer = [(0.18142937, 0.54681134), (0.38282228, 0.107781954), (0.43220532, 0.013640274),
         (0.48068276, 0.019459315), (0.48322055, 0.11583236), (0.46696007, 0.2230227),
         (0.48184678, 0.2656454), (0.45998818, 0.2784367), (0.4168235, 0.2190962),
         (0.4124987, 0.21208182), (0.39593673, 0.2520411), (0.44333926, 0.28375763),
         (0.4978224, 0.3981428), (0.7703431, 0.20181546), (0.7612364, 0.33008572),
         (0.9856581, 0.2215304), (0.99374324, 0.3353423), (0.9688778, 0.38663587),
         (0.59554976, 0.655444), (0.59496254, 0.58492756), (0.27641845, 0.656314),
         (0.3242084, 0.6072907), (0.42408508, 0.49353212), (0.20984341, 0.59003067)]

inners = [[(0.87789994, 0.32551613), (0.5614043, 0.540334), (0.9494598, 0.39622766)],
          [(0.2799388, 0.52516246), (0.38555774, 0.32233855), (0.36943135, 0.30108362)]]

polyarea = PolyArea([outer, inners...])

mesh = discretize(polyarea, DelaunayTriangulation())

fig = Mke.Figure(size = (800, 400))
viz(fig[1,1], polyarea)
viz(fig[1,2], mesh, showsegments = true)
fig
Example block output

RegularDiscretization

Meshes.RegularDiscretizationType
RegularDiscretization(n1, n2, ..., np)

A method to discretize primitive geometries with n1×n2×...×np elements sampled regularly along each parametric dimensions. The adequate number of points is calculated for each type of geometry and passed to RegularSampling.

source
sphere = Sphere((0.,0.,0.), 1.)

mesh = discretize(sphere, RegularDiscretization(10,10))

viz(mesh, showsegments = true)
Example block output

ManualSimplexification

box = Box((0., 0., 0.), (1., 1., 1.))

mesh = discretize(box, ManualSimplexification())

viz(mesh, colors = 1:nelements(mesh))
Example block output