# Points

`Meshes.Point`

— Type`Point{Dim,T}`

A point in `Dim`

-dimensional space with coordinates of type `T`

. The coordinates of the point provided upon construction are with respect to the canonical Euclidean basis.

**Example**

`O = Point(0.0, 0.0) # origin of 2D Euclidean space`

**Notes**

- Type aliases are
`Point1`

,`Point2`

,`Point3`

,`Point1f`

,`Point2f`

,`Point3f`

`Meshes.embeddim`

— Method`embeddim(point)`

Return the number of dimensions of the space where the `point`

is embedded.

`embeddim(domain)`

Return the number of dimensions of the space where the `domain`

is embedded.

`embeddim(geometry)`

Return the number of dimensions of the space where the `geometry`

is embedded.

`Meshes.coordtype`

— Method`coordtype(point)`

Return the machine type of each coordinate used to describe the `point`

.

`coordtype(domain)`

Return the machine type of each coordinate used to describe the `domain`

.

`coordtype(geometry)`

Return the machine type of each coordinate used to describe the `geometry`

.

`Meshes.coordinates`

— Method`coordinates(A::Point)`

Return the coordinates of the point with respect to the canonical Euclidean basis.

`Base.:-`

— Method`-(A::Point, B::Point)`

Return the `Vec`

associated with the direction from point `A`

to point `B`

.

`Base.:+`

— Method```
+(A::Point, v::Vec)
+(v::Vec, A::Point)
```

Return the point at the end of the vector `v`

placed at a reference (or start) point `A`

.

`Base.:-`

— Method```
-(A::Point, v::Vec)
-(v::Vec, A::Point)
```

Return the point at the end of the vector `-v`

placed at a reference (or start) point `A`

.

`Base.isapprox`

— Method`isapprox(A::Point, B::Point)`

Tells whether or not the coordinates of points `A`

and `B`

are approximately equal.