Triangulating Rectangular Regions

In this tutorial, we show how you can easily triangulate rectangular regions of the form $[a, b] \times [c, d]$. Rather than using triangulate, you can use triangulate_rectangle for this purpose. To start, we give a simple example

using DelaunayTriangulation
using CairoMakie

a, b, c, d = 0.0, 2.0, 0.0, 10.0
nx, ny = 10, 25
tri = triangulate_rectangle(a, b, c, d, nx, ny)
fig, ax, sc = triplot(tri)
fig
Example block output

This can be much faster than if we just construct the points in the lattice manually and triangulate those. Here's a comparison of the times.

using BenchmarkTools
points = get_points(tri)
@benchmark triangulate($points; randomise = $false) # randomise=false because points are already in lattice order, i.e. spatially sorted
BenchmarkTools.Trial: 1312 samples with 1 evaluation.
 Range (minmax):  3.592 ms 19.302 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     3.682 ms                GC (median):    0.00%
 Time  (mean ± σ):   3.808 ms ± 931.606 μs   GC (mean ± σ):  1.97% ± 6.36%

  █  ▄▂▂▁▂▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▂▁▂▁▁▁▁▁▂ ▂
  3.59 ms         Histogram: frequency by time         8.1 ms <

 Memory estimate: 1.15 MiB, allocs estimate: 2627.
@benchmark triangulate_rectangle($a, $b, $c, $d, $nx, $ny)
BenchmarkTools.Trial: 8845 samples with 1 evaluation.
 Range (minmax):  383.924 μs 24.804 ms   GC (min … max):  0.00% … 93.89%
 Time  (median):     463.342 μs                GC (median):     0.00%
 Time  (mean ± σ):   562.400 μs ± 757.613 μs   GC (mean ± σ):  13.27% ± 11.32%

  ▁  ▃▂▂▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ ▂
  384 μs           Histogram: frequency by time         4.28 ms <

 Memory estimate: 1.09 MiB, allocs estimate: 2371.

This difference would be more pronounced for larger nx, ny.

Note that the output of triangulate_rectangle treats the boundary as a constrained boundary:

get_boundary_nodes(tri)
4-element Vector{Vector{Int64}}:
 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 [10, 20, 30, 40, 50, 60, 70, 80, 90, 100  …  160, 170, 180, 190, 200, 210, 220, 230, 240, 250]
 [250, 249, 248, 247, 246, 245, 244, 243, 242, 241]
 [241, 231, 221, 211, 201, 191, 181, 171, 161, 151  …  91, 81, 71, 61, 51, 41, 31, 21, 11, 1]

This boundary is split into four separate sections, one for each side of the rectangle. If you would prefer to keep the boundary as one contiguous section, use single_boundary=true. Moreover, note that this tri has ghost triangles:

tri
Delaunay Triangulation.
   Number of vertices: 250
   Number of triangles: 432
   Number of edges: 681
   Has boundary nodes: true
   Has ghost triangles: true
   Curve-bounded: false
   Weighted: false
   Constrained: true

You can opt into not having these by using delete_ghosts=true:

tri = triangulate_rectangle(a, b, c, d, nx, ny; single_boundary = true, delete_ghosts = true)
tri
Delaunay Triangulation.
   Number of vertices: 250
   Number of triangles: 432
   Number of edges: 681
   Has boundary nodes: true
   Has ghost triangles: false
   Curve-bounded: false
   Weighted: false
   Constrained: true
get_boundary_nodes(tri)
67-element Vector{Int64}:
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
  ⋮
 81
 71
 61
 51
 41
 31
 21
 11
  1
DelaunayTriangulation.has_ghost_triangles(tri)
false

Just the code

An uncommented version of this example is given below. You can view the source code for this file here.

using DelaunayTriangulation
using CairoMakie

a, b, c, d = 0.0, 2.0, 0.0, 10.0
nx, ny = 10, 25
tri = triangulate_rectangle(a, b, c, d, nx, ny)
fig, ax, sc = triplot(tri)
fig

using BenchmarkTools
points = get_points(tri)
@benchmark triangulate($points; randomise = $false) # randomise=false because points are already in lattice order, i.e. spatially sorted

@benchmark triangulate_rectangle($a, $b, $c, $d, $nx, $ny)

get_boundary_nodes(tri)

tri

tri = triangulate_rectangle(a, b, c, d, nx, ny; single_boundary = true, delete_ghosts = true)
tri

get_boundary_nodes(tri)

DelaunayTriangulation.has_ghost_triangles(tri)

This page was generated using Literate.jl.