Convex Hull
DelaunayTriangulation.convex_hull
— Functionconvex_hull(points; predicates::AbstractPredicateKernel=AdaptiveKernel(), IntegerType::Type{I}=Int) where {I} -> ConvexHull
Computes the convex hull of points
. The monotone chain algorithm is used.
Arguments
points
: The set of points.
Keyword Arguments
IntegerType=Int
: The integer type to use for the vertices.predicates::AbstractPredicateKernel=AdaptiveKernel()
: Method to use for computing predicates. Can be one ofFastKernel
,ExactKernel
, andAdaptiveKernel
. See the documentation for a further discussion of these methods.
Output
ch
: TheConvexHull
.
DelaunayTriangulation.convex_hull!
— Functionconvex_hull!(tri::Triangulation; reconstruct=has_boundary_nodes(tri), predicates::AbstractPredicateKernel=AdaptiveKernel())
Updates the convex_hull
field of tri
to match the current triangulation.
Arguments
tri::Triangulation
: TheTriangulation
.
Keyword Arguments
reconstruct=has_boundary_nodes(tri)
: Iftrue
, then the convex hull is reconstructed from scratch, usingconvex_hull
on the points. Otherwise, computes the convex hull using the ghost triangles oftri
. If there are no ghost triangles butreconstruct=true
, then the convex hull is reconstructed from scratch.predicates::AbstractPredicateKernel=AdaptiveKernel()
: Method to use for computing predicates. Can be one ofFastKernel
,ExactKernel
, andAdaptiveKernel
. See the documentation for a further discussion of these methods.
convex_hull!(ch::ConvexHull{P,I}; predicates::AbstractPredicateKernel=AdaptiveKernel()) where {P,I}
Using the points in ch
, computes the convex hull in-place.
The predicates
keyword argument determines how predicates are computed, and should be one of ExactKernel
, FastKernel
, and AdaptiveKernel
(the default). See the documentation for more information about these choices.
See also convex_hull
.