Convex Hull
DelaunayTriangulation.convex_hull — Functionconvex_hull(points; predicates::AbstractPredicateKernel=AdaptiveKernel(), IntegerType::Type{I}=Int) where {I} -> ConvexHullComputes the convex hull of points. The monotone chain algorithm is used.
Arguments
points: The set of points.
Keyword Arguments
IntegerType=Int: The integer type to use for the vertices.predicates::AbstractPredicateKernel=AdaptiveKernel(): Method to use for computing predicates. Can be one ofFastKernel,ExactKernel, andAdaptiveKernel. See the documentation for a further discussion of these methods.
Output
ch: TheConvexHull.
DelaunayTriangulation.convex_hull! — Functionconvex_hull!(tri::Triangulation; reconstruct=has_boundary_nodes(tri), predicates::AbstractPredicateKernel=AdaptiveKernel())Updates the convex_hull field of tri to match the current triangulation.
Arguments
tri::Triangulation: TheTriangulation.
Keyword Arguments
reconstruct=has_boundary_nodes(tri): Iftrue, then the convex hull is reconstructed from scratch, usingconvex_hullon the points. Otherwise, computes the convex hull using the ghost triangles oftri. If there are no ghost triangles butreconstruct=true, then the convex hull is reconstructed from scratch.predicates::AbstractPredicateKernel=AdaptiveKernel(): Method to use for computing predicates. Can be one ofFastKernel,ExactKernel, andAdaptiveKernel. See the documentation for a further discussion of these methods.
convex_hull!(ch::ConvexHull{P,I}; predicates::AbstractPredicateKernel=AdaptiveKernel()) where {P,I}Using the points in ch, computes the convex hull in-place.
The predicates keyword argument determines how predicates are computed, and should be one of ExactKernel, FastKernel, and AdaptiveKernel (the default). See the documentation for more information about these choices.
See also convex_hull.